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Abstract
This document describes the TRansportation ANalysis SIMulation
System (TRANSIMS) software architecture and high-level design for
the first Interim Operational Capability (IOC-1).  Our primary goal in
establishing the TRANSIMS software architecture is to lay down a
framework for IOC-1.  We want to make sure that the various
components of TRANSIMS are effectively integrated, both for IOC-1
and beyond, so that TRANSIMS remains flexible, expandable,
portable, and maintainable throughout its lifetime.  In addition to
outlining the high-level design of the TRANSIMS software, we also set
forth the software development environment and software engineering
practices used for TRANSIMS.
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I. Introduction

A. Overview
This document describes the TRANSIMS software architecture and high-level design for
the first Interim Operational Capability (IOC-1).  It is important to note that some of the
IOC-1 implementation may differ from this design and some aspects of the design may
not be implemented until a future IOC—see the IOC-1 documentation for the individual
TRANSIMS components for details on the implementations.

Our primary goal in establishing the TRANSIMS software architecture is to lay down a
framework for IOC-1.  We want to make sure that the various components of
TRANSIMS are effectively integrated, both for IOC-1 and beyond, so that TRANSIMS
remains flexible, expandable, portable, and maintainable throughout its lifetime.  We start
by breaking down each of the major IOC-1 software systems (Simplified HCAD, Interim
Planner, Low-Fidelity Microsimulator, Input Editor, and Output Visualizer) into
subsystems.  We then define the functionality of each subsystem, but we will not concern
ourselves with the design of the subsystems themselves in this document.

In addition to outlining the high-level design of the TRANSIMS software, we also
identify the commercial software that forms the software development environment (i.e.,
compiler, debugger, configuration management tool, case tool, etc.), and the commercial
software incorporated into the run-time TRANSIMS applications (i.e., C++ libraries,
databases, geographic information systems, statistics packages, etc.).

Finally, we discuss recommended software engineering practices and standards for
coding, documentation, methodology, configuration management, and testing.

B. The Importance of Architecture
Architectural considerations become more important the larger a software development
project becomes: [Mc 93]

On a small project, construction is the most prominent activity by far, taking as much as
80 percent of the total development time.  On a medium-size project, construction is still
the dominant activity but its share of effort falls to about 50 percent.  On very large
projects, architecture, integration, and system testing each take up about as much time as
construction.

Figure 1 illustrates this point.
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Figure 1.  Activity proportions and project size.  [Mc 93]

It also pays to do things right the first time:  Empirical data shows that a change in the
early stages of a project, in requirements or architecture, costs 50 to 200 times less than
the same change later, in construction or maintenance [Mc 93].   Researchers at IBM
found that purging an error by the beginning of design, code, or unit test allows rework to
be done 10 to 100 times less expensively than when it’s done in the last part of the
process [Mc 93].  Figure 2 illustrates this point.

Figure 2.  Cost of fixing defects.  [Mc 93]

C. Architectural Principles in TRANSIMS
We have adopted four major principles of modern software engineering for the
architecture of TRANSIMS: layering, modularity, iteration, and object-orientation.

Layering separates the software components into a hierarchy with the application at the
top, the domain in the middle, and the technology at the bottom.  Each layer uses the
layers below it, but not vice versa.  Layering encourages the reuse of software
components in different parts of the application.  Layering provides an integrated
framework for the software development.
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Each software component/module has responsibilities and provides services.  The actual
implementation of the module is separate from its public interface.  Modularity reduces
the coupling between software components that can make maintenance, reuse, portability,
and extension difficult.

The iterative development process reduces risk.  Each iteration refines the system and
results in an executable release.  Figure 3 illustrates the TRANSIMS iterative
development process.

Research

Architecture

Design

Coding

Testing

Design

Coding

Testing

Design

Coding

Testing

Design

Coding

Testing

time IOC-1

Figure 3.  The TRANSIMS iterative development process

Key features of object-orientation [CS 94] include abstraction/encapsulation, which
allows building models that map to the real world,  inheritance, which enables code
reuse, and polymorphism, which reduces software maintenance and increases
extensibility. Critical issues addressed by object technology are scheduling (meeting
delivery dates), complexity (modeling complex applications), size (managing
interdependencies in large systems), and compatibility (making different chunks of code
interoperate).  The use of object technology results in reuse of code, reduced code size,
increased productivity, and lower defect rate.

II. Design
The layered architecture for TRANSIMS contains the following layers:
• Application:  The Analyst Toolbox provides a centralized interface for TRANSIMS.
• System:  The TRANSIMS systems centralize access to the major functional

components of TRANSIMS.
• Subsystem (high-level):  The high-level subsystems each provide services to one or

more TRANSIMS systems.  This enhances the reusability and flexibility of the
software.

• Subsystem (low-level):  The low-level subsystems provide basic services (mostly, data
and operations on data) to the high-level subsystems and to the systems.  They
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provide a common representation of objects such as vehicles, travelers, the road
network, etc.  They never directly interact with the user.

• Subsystem (utility):  The utility subsystems provide basic domain-independent
services to the higher-level components of TRANSIMS.  They are used to isolate the
domain subsystems from dependence on the operating system, file system, etc.

Figure 4 depicts this layered architecture; for diagrammatic simplicity, connections
between the third and fourth layers are not shown.  Different systems use different
combinations of subsystems to implement their functionality (see Table 1).
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Figure 4.  TRANSIMS software systems and subsystems.
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Table 1.  Major interdependencies between TRANSIMS systems and subsystems.

Subsystem Input
Editor

Simplified
HCAD

Simplified
Planner

Low-Fidelity
Microsimulator

Output
Visualizer

Network Representation √ √ √ √
Establishment
Representation

√ √ √ √

Traveler Representation √ √ √ √ √
Vehicle Representation √ √ √ √
Plan Representation √ √ √ √ √
Population Synthesizer √
Activity Generator √
Origin-Destination (OD)
Matrix/Route
Disaggregator

√

Router √
Parallel Toolbox √
Cellular Automaton
(CA) Microsimulation

√

Simulation Output √ √
Geographic Information
System GIS)

√ √

Statistical Analysis √
Animation √
Plotting √
Database √ √ √ √ √

A. Application Layer
The Analyst Toolbox provides a centralized and uniform interface integrating the major
TRANSIMS systems.  It forms the primary user interface for an analyst.

B. System Layer
The TRANSIMS systems centralize access to the major functional components of
TRANSIMS.  For IOC-1, there are the following systems:
• Input Editor
• Simplified Household and Commercial Disaggregator (HCAD)
• Interim Planner
• Low-Fidelity Microsimulator
• Output Visualizer
Additional systems may be added for future IOCs or from sources external to LANL.  For
example:
• Air Quality Estimator
• High-Fidelity Microsimulator
• Land Use Estimator
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1. Input Editor
The input editor provides a means for editing the database and setting up scenarios for
simulation.  All scenario data will be editable.  It will have functions for:
• importing new road networks
• altering existing networks
• merging networks
• extracting networks
• editing traveler characteristics
• editing establishment characteristics
• editing vehicle characteristics

The editor will be integrated into the rest of the geographic information system (GIS)
software, supporting visual/graphical editing of geographic objects, table editing of non-
geographic objects, and editing via ad-hoc queries (using the native query languages for
ArcView, Arc/Info, and Oracle). Version control will also be supported.

Figure 5 shows how the input editor might use other TRANSIMS components.
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Figure 5.  Software components used by the input editor.

2. Simplified Household and Commercial Activity Disaggregator (HCAD)
The simplified HCAD system provides the ability to construct travel activities for study
areas.  This system will have the capability to select and import any of the available



LA-UR-97-1242 9

synthetic populations for a study region and to generate travel activity from the chosen
synthetic population.  The focus in IOC-1 will be on households, as opposed to
commercial activity.

3. Simplified Planner
The simplified planner will provide the microsimulator with household or individual
travel demand in the form of trip plans.  For IOC-1, the major effort will be to develop
the data structure that integrates the flow of data from the synthetic population and its
activity demand, through the planner’s trip planning process, and on to the
microsimulation.  The planner’s process, or mode/route/activity assignment algorithms,
will be simplified to accommodate available data and microsimulation development time
constraints.

There are three types of input data: the transportation network, household/individual
activity demand, and individual travel behavior.  The network required by the planner is a
subset of the total network representation.  Activity demand and travel behavior are
derived from national and local demographic and socioeconomic characteristics, and local
land use.  For IOC-1, the simplified HCAD will provide this data.  While the household is
the basic unit of activity input, the emphasis in IOC-1 will be to identify mandatory
activities at the individual level.  Discretionary activities at the household or individual
level may be included.  Individual travel behavior input will consist primarily of a limited
set of goals and preference distributions.

The trip planning process will consist of activity, mode, and route assignment algorithms.
For IOC-1, no activity assignments will be made; the mandatory activities will be
provided by the simplified HCAD.  No modal assignments will be made because of the
focus on the automobile.  Carpooling will not be addressed; pedestrian movement may be
addressed but only with respect to movement to and from the automobile.

Output data are the individual trip plans required by the microsimulation.  This data
includes trips and trip chains consisting of origins, activity destinations, routes, and times
associated with activity performance and route movement.

4. Low Fidelity Microsimulator
The low-fidelity microsimulator is a regional-scale, low-fidelity traffic microsimulation
based on cellular automata and implemented on a distributed computer network.  It will
be the primary technical focus of IOC-1.  A preliminary design for this type of
microsimulation was proposed by Marcus Rickert [Ri 94].

The user interface to the low-fidelity microsimulator will provide a means for specifying
computational nodes (CPNs), load balancing parameters, diagnostic outputs, and
simulation outputs, as well as data sources to be used as inputs.

Figure 6 shows how the microsimulator might use other TRANSIMS components.



LA-UR-97-1242 10

Analyst
Toolbox

Database

Simplified
HCAD

Interim
Planner

Low Fidelity
Microsimulator

Input
Editor

Output
Visualizer

Populat’n
Synth.

Activity
Generator

Router
Goal

Measur.
Parallel
Toolbox

CA
Microsim.

GIS Statistics Animation Plotting

Estatblishment
Representation

Traveler
Representation

Activity
Representation

Plan
Representation

Vehicle
Representation

Network
Representation

Simulation
Output

Application

System

High-level subsystem

Low-level subsystem

Utility subsystem

Figure 6.  Software components used by the low fidelity microsimulator.

5. Output Visualizer
The output visualization system provides an integrated interface to the various tools
available for viewing and analyzing aspects of simulation and plan data.  There are five
types of output available:
• animation
• statistical analysis
• geographic analysis
• plots
• data export

The user can select a geographic region of interest (and time interval) and filter the
available data before visualizing it.  The output visualization system will retrieve the
specified data from the data sources and then send the data to the appropriate
visualization tool.  The output visualization system interface will handle as much of the
user interaction as possible.  Some of the interaction may have to take place in the third-
party software that is integrated into the output visualizer.

The results of statistical and geographic analyses can also be plotted.  It must also be
possible to export data to standards formats for spreadsheets, etc.
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C. High-Level Subsystem Layer
The high-level subsystems each provide services to one or more TRANSIMS systems.
These subsystems enhance the reusability and flexibility of the software.  For IOC-1,
there are the following high-level subsystems:
• Population Synthesizer
• Activity Generator
• OD Matrix/Route Disaggregator
• Router
• Parallel Toolbox
• CA Microsimulation
• GIS
• Statistics
• Animation
• Plotting

1. Population Synthesizer
Using 1990 census, data a baseline synthetic populations of households will be generated
which statistically mimic those sampled in the 1990 census.  These populations will be
produced on a census tract or block group basis.  Each household and person in the
synthetic population will be associated with the entire suite of socioeconomic
characteristics available from the census.  For future applications, these households will
be aged to the desired date using projected land use and demographic trends in the study
region.  The populations will not be aged for IOC-1.

Input data for the generation of the baseline population will include the Census Bureau
Standard Tape File 3 and the Public Use Microdata Sample.  Standard statistical
techniques will be used to generate the synthetic populations.

For IOC-1 baseline synthetic populations will be generated off-line.  Multiple populations
will be produced, but the software for doing so is not part of IOC-1.  The households of
these populations will be placed at random at locations in the census tract or block group.

2. Activity Generator
Travel activity will be predicted for each household and household member using
national trends and local activity surveys.  These desired travel activities will be passed to
the planner for routing and scheduling.  Activities will be assigned to either the household
or the individual.  For example, work activities would be assigned to the individual, while
a household activity could be a shopping trip.  Additionally, activities will be either
mandatory or discretionary.

The structure of IOC-1 will allow for future activity-based travel.  However, for the
applications considered in IOC-1, travel activity will be replaced by trips that are
generated from OD matrices.  All trips will be assigned to individuals (no household
activity analysis is planned for IOC-1) and all trips will be treated as mandatory.  Trips
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from an OD matrix will be matched with the demographics for the households.  These
trips will be randomly distributed to individuals from demographically matched
households within the census tracts or block groups that make up the Dallas Travel
Survey Zones.

3. OD Matrix/Route Disaggregator
For IOC-1, actual travel data is available only in the form of origin-destination (OD)
matrices and, possibly, traffic and turn counts.  To produce trips, a utility preprocessor
will be needed to disaggregate OD matrix zone-based traffic flow down to individual
travelers, specific routes and activity addresses.  Methods have currently been examined
that will disaggregate the zonal flows along the boundaries of the detailed area of interest.
Once the individual travelers are placed on routes that enter the area of interest and
assigned starting times, the simplified planner will then perform the normal route
assignment to generate detailed individual trip plans.  The travelers will move to final
destinations within the area of interest or through and out of the area of interest based on
their aggregate OD matrix assignments.  If traffic or turn counts are available for the area
of interest, they will be used to calibrate the planner’s preference distributions.

4. Router
Given household or individual activity demand, individual travel behavior, and individual
travelers along the boundaries of the detailed area of interest, this subsystem will provide
feasible or optimally infeasible sets of trip plans.  A feasible trip plan is one in which all
individual goals have been satisfied; an optimally infeasible plan is one that has not
satisfied all of the individual’s goals but that has minimized the non-zero goal deviations.

The router will be structurally consistent with the mode, route and activity assignment
enhancements planned for later IOCs.

5. Parallel Toolbox
The parallel toolbox subsystem is those parts of the low-fidelity microsimulator that deal
with running on a parallel distributed computer.  The parallel toolbox provides a
master/slave parallel computing model implemented on top of the PVM toolkit for
heterogeneous network computing.  PVM provides the message-passing substrate that
allows tasks on different machines (CPNs) to communicate.  Using the parallel toolbox,
dynamic load balancing of the road network and associated vehicle objects is provided
and is based on usage statistics gathered while the simulation runs.  CPNs may be added
or deleted during a running simulation.  Diagnostic outputs will be provided, as will some
form of fault tolerance.  Simulation outputs will be produced in parallel.

6. CA Microsimulation
The CA (cellular automaton) microsimulation subsystem is those parts of the low-fidelity
microsimulator that deal with doing traffic simulation using cellular automata.  The
network representation in this approach is grid based, and a mapping from the general
network representation subsystem to grids will be provided.  Similarly, mappings from
the vehicle and traveler representation subsystems into vehicle/driver combinations that
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are suitable for the CA approach to vehicle motion will be made.  Travelers will utilize
plans from the plan representation subsystem.

7. GIS
The geographic information subsystem (GIS) provides high-level support for the
following functions:
• editing network data
• viewing all types of geographic data and non-geographic data that can be linked to

geographic data
• thematic display and analysis of plans and simulation output
• aggregation/disaggregation of geographic data
• preprocessing/formatting of geographic data from external sources (i.e., MPO data)

The GIS subsystem will support the import/export and editing of data available from
other data-related subsystems (database, network, traveler, vehicle, plan, and output) as
well as supporting the export of data to visualization and analysis tools such as the
plotting, statistics, and animation subsystems.

8. Statistical Analysis
The statistical analysis subsystem will support the following general types of statistical
analyses:
• confidence intervals
• analysis of variance
• hypothesis testing

All of the data available from other data-related subsystems (database, network, traveler,
vehicle, plan, output, and GIS) will be importable for analyses.  Predefined and user-
definable analyses will be available for computing various measures of effectiveness; it
will also be possible to save an analysis configuration for later recall and re-running.  The
results of analyses will be exportable to the plotting subsystem.

9. Animation
This subsystem will provide animated display of vehicle movement and traffic controls
(e.g., signals) in real time and in accelerated time.  Other map features such as buildings,
bodies of water, topography will not be displayable for IOC-1.  The vehicles and network
features will be selectable with the mouse to obtain detailed attribute data.  It will be
possible to color-code vehicles based on their attributes. Plans can also be animated.

10. Plotting
The plotting subsystem will support the following general types of plots:
• scatter plot
• histogram
• lines
• areas
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Three-dimensional and color plotting will be supported, as will be the grouping of
attributes.  All of the data available from other data-related subsystems (database,
network, traveler, vehicle, plan, output, GIS, and statistics) will be importable for
plotting.  Predefined and user-definable plots (whose configuration can be saved and
loaded) will be available.  It will also be possible to customize axes, legends, markers,
and annotation.

The specific types of plots will include the following:
• waterfall plots
• fundamental diagrams (all styles)

D. Low-Level Subsystems Layer
The low-level subsystems provide basic services (mostly data and operations on data) to
the high-level subsystems and to the systems.  The representation1 subsystems model the
basic attributes and behavior of transportation objects for the high-level subsystems and
for the systems; they also supply a common representation of objects that are used
throughout TRANSIMS.  These subsystems never interact directly with the user.  For
IOC-1, there are the following low-level subsystems:
• Establishment Representation
• Traveler Representation
• Plan Representation
• Network Representation
• Vehicle Representation
• Simulation Output
The representations have been designed for long-term usefulness in TRANSIMS, not just
for IOC-1.

Different systems and high-level software components need different views of the basic
objects:  The basic representation of an object contains the attributes and behavior that all
subsystems using the object need.  The various views of the object in different
subsystems also contain the object’s additional attributes and behavior specifically
required by that subsystem.  For example, the CA microsimulation subsystem does not
need to know the demographic characteristics of a traveler, but the Statistics subsystem
probably does.  It would be inefficient to carry all of the demographic information in a
microsimulation, however.

                                                
1A representation is a view of a database, plus utility classes for using the domain data.  The specification
of a representation says nothing about the actual data organization.  Rather, it specifies what data must be
available.  Functions for both reading and writing data must be a part of a representation.  The
representation subsystems will also contain utility functions for manipulating and using the data.
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Figure 7.  Example of a basic representation of a class and a view of it (Booch notation).

1. Network Representation
The transportation network representation includes detailed information about roads,
intersections, signals, sensors, transit systems, rail infrastructure, bikeways and walkways.
Network topology is represented along with attributes that describe the nodes and links in
the network.  Multiple views of the network representation are required, in some degree,
by the planner, microsimulator, and output visualizer.

Link attributes for the road network include such characteristics as link type, length,
directionality, speed limit, number of lanes, special lane designators, grade, toll, passing
allowed, visibility range, street name, traffic capacity, etc.  Node attributes may include
node type, associated intersection (if applicable), etc.  Provision will be made to represent
the vehicular traffic network at a resolution at least as detailed as that of the standard
traffic engineering tools TRAF and TRANSYT-7F.

Intersections may be represented at multiple levels of fidelity.  The planner requires less
fidelity than the low-fidelity microsimulator, which uses a medium-fidelity representation
incorporating multiple queues.  This intersection representation will include algorithms
for handling the queues.  Signalized and unsignalized intersections will be represented,
and the representation must include lane usage and allowable turning movements.  Both
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timed and actuated signals will be included, along with sensors for actuated signals.  The
signal representation will include algorithms for cycling through signal phases.

Transit networks, associated transit schedules, and intermodal transfer facilities will not
be represented in IOC-1, but provision will be made to include them in a later IOC.

The user interface to the network representation will be provided through the Input
Editor.  The network subsystem will support the importation of external data in formats
such as Arc/Info, TRANSYT-7F, and the TRAF family.

2. Establishment Representation
The definition of an establishment includes households, group quarters, and businesses.
Each establishment will posses a unique identifier and the socioeconomic attributes
required by the activity generator subsystem.

IOC-1 will not focus on commercial activity or the movement of freight.  Provisions will
be made for the needs of the more sophisticated planner and disaggregator to be
developed in a later IOC.

3. Traveler Representation
The traveler representation includes the demographic, socioeconomic, and geographic
attributes needed for identifying travelers and for planning trips.  It also includes the
driver representation and driver model needed for simulating driver behavior.  The
external data resources will not be available for the simplified planner.  Thus, the traveler
representation for IOC-1 will be fairly simple.  Nevertheless, it should implicitly specify
unique travelers and make it possible to associate them with vehicle identifiers in the plan
representation.  The framework developed will be consistent with the future
enhancements to be made in the planner and disaggregator.

The driver representation describes the attributes of the drivers used in the models.
Driver’s decision-making processes may not be modeled at the same level of fidelity in
every simulation, so a flexible driver representation that supports a particular decision
logic without requiring unnecessary attributes is needed.  Driver attributes will be specific
parameters that are required by the decision logic algorithms rather than abstract
behavioral attributes such as aggressiveness.

Potential attributes include driver age, sex, socioeconomic attributes, desired speed,
following distance, and acceptable gaps for left and right turns, for crossing intersections,
and for changing lanes.  Algorithms that define the driver’s decision logic are also part of
the driver representation.  Traveler attributes required by the planner include household
id, mandatory activities, age, sex, socioeconomic class, trip goal weights, and mode/route
preference distributions.  Driver attributes included in the current CA microsimulation
include desired speed and a variable that causes drivers to vary from their desired speed
some of the time.
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The user interface to the driver representation will support user specification of values for
the attributes required in the study as well as the ability to read existing descriptions of
driver properties.

4. Vehicle Representation
The vehicle representation describes the attributes of the vehicles used in the models.
Not all potential attributes are needed for every type of study (e.g. air quality studies
require dynamic information about engine properties, while other studies may not).  The
vehicle representation should be flexible enough to support a variety of studies but not
require unnecessary attributes for a particular study.

Potential attributes include such properties as vehicle type, maximum speed, maximum
acceleration, maximum deceleration, stopping distance, length, width, weight, age, fuel
type, and engine properties.  Dynamic attributes such as position along road segment,
lane, velocity, acceleration, and engine temperature may also be required.  Algorithms
that define the motion of vehicles are also part of the vehicle representation.

The version of the planner to be used in IOC-1 requires only vehicle type.  The current
CA microsimulation requires only maximum speed, but length will also be required if
multiple vehicle types are supported.  Acceleration and deceleration parameters may also
be desirable to smooth speed fluctuations.

The user interface to the vehicle representation is provided through the input editor and
will support user specification of values for the attributes required in the study, as well as
the ability to read existing descriptions of vehicle properties.  When multiple types of
vehicles are modeled, fleet mix will also be under user control.

5. Plan Representation
The plan representation will provide a view of trips and trip chains in the form of routes,
origins, and destinations during specific time periods.  A trip chain is a sequence of trips.
A trip must provide:
• trip purpose
• unique identifier for the traveler
• unique identifier for a vehicle
• starting node in the network
• desired departure time from that starting node
• destination node in the network
• desired arrival time at that destination node

Detailed routes will specify which streets simulated vehicles will follow in the
microsimulation and when they should be at various points along the way to satisfy an
associated trip goal.

The detailed route design will impact the complexity of both the microsimulation and the
visualization systems.  The actual format might not include the ID of every link and node
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along the way.  Perhaps a detailed route should be included as part of the trip
specification.

6. Simulation Output
The simulation output subsystem will gather the data generated by simulations and
provide access to it for other subsystems as soon as the data is received.  The simulation
output will be configurable, and the following predefined configurations will be provided:
• trajectory information (time, segment, lane, position along segment, velocity, and

acceleration)
• control systems (signals, sensors, and high-occupancy vehicle lanes)
• vehicle state information (brakes on, lights, and signaling)
• measures of effectiveness (vehicle-hours traveled, vehicle-miles traveled, average

speed, average density, and headway)
• animation output (trajectory and control systems)
• engine performance (idle time, start time, stop time, temperature, and fuel

consumption)
• emissions (CO, NOx, O3, particulates, and aerosols)
• traveler characteristics (vehicle occupancy, demographics, trip purpose, and plan

fulfillment)
• additional outputs available from TRAF and TRANSYT-7F products

This subsystem will utilize the database subsystem to support metadata, data distribution,
data export, and archiving.  Special provision will be made for dealing with the large
amount of data generated by simulations.  It will also be possible to perform compression
(lossy or lossless) on the data to reduce the storage required for it.  (Only limited
capabilities will be developed in this area for IOC-1.)

In IOC-1, no automated feedback mechanism will be provided for using simulation
output to alter simulation or planner input for subsequent simulations.  This can be
accomplished, manually, through a (possibly complicated) series of ad-hoc queries
involving the output and input data sets.

E. Utility Subsystem Layer
The utility subsystems provide basic domain-independent services to the higher level
components of TRANSIMS.  These are used to isolate the rest of TRANSIMS from
dependence on the specifics of the operating system, file system, communications
network, etc.  The components of this layer include:
• Database
• Interprocess Communication
• Containers
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1. Database
The database subsystem provides low-level services for accessing and modifying data.  It
forms a layer separating the other subsystems from the actual data files—the other
subsystems will not have access to the data files at the physical level.

Each data source will be indexed by a unique (primary) index.  Additional (secondary)
indexes will be allowed.  The interaction between other subsystems and the data will be
mediated by the public interfaces of the classes in the database subsystem.  Range lookup
of key values and ad-hoc SQL queries will be supported.  Procedures (e.g., C++
templates, preprocessor macros, or custom preprocessor) will be available to coordinate
the maintenance of the database schema and class definitions.  The database subsystem
will maintain metadata specifying the following information for all of the data sources:
• existence
• versions
• network location
• attributes (data dictionary)

The distribution of a data source over the network will not be supported for IOC-1,
although this capability will be added in a later IOC.  Migration of data will be supported,
but the database subsystem will not be required to automatically load-balance the data
among the network nodes.  An archiving facility will also be available.  There will also be
a mechanism for extracting data specified at run-time from a data source and exporting it
to a formatted binary or ascii file.

2. Interprocess Communication
A C or C++ interprocess communication library will provide support for the
communication between distributed TRANSIMS components running on different
machines or in different address spaces.

3. Containers
A C++ container class library will provide support for grouping object in sets, bags, lists,
graphs, etc.

III. Implementation

A. Development Environment

1. Supported Platforms
The initial development of TRANSIMS will take place on a Sun hardware/software
platform.  The development work will be portable to other Unix platforms, but not
necessarily immediately, insofar as compiler technology currently varies widely from
platform to platform.  Windows NT will be supported for the user interface, but not for
the planner and microsimulation; Windows, DOS, and Macintosh will not be directly
supported, although they may be used as X clients for the user interface.
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2. Software
The SunPro C++ suite of C++ development tools will be used for work on the Sun
hardware/software platform.  This suite includes a compiler, debugger, source code
editor, and object-oriented browser.  The Borland integrated C++ development
environment will be used for Windows NT development.  Both the SunPro and Borland
compilers are certified for use with the C++ class libraries recommended below.  The
configuration management tool’s version of “make” will be used for building
executables.  Purify will be used for debugging memory management.  Software
development team members, of course, have the option of using any compatible tools that
supplement the above.

The word processor standard will be FrameMaker.  The standard tool for object-oriented
software engineering will be Rose/C++.  The configuration management tool will be
ClearCase.

B. Tools (Third-Party Software)

1. C++ Libraries
The ANSI standard C library [Pl 92] and the ANSI draft standard C++ library [Pl 95] will
be used.  POSIX-compliant operating system calls will also be used [Ga 95].  This
combination of standard libraries will support the portability among Unix platforms, and
between Unix and Windows NT.

The Booch Components [RW 94] will be used for container classes and exception
handling.  These are robust, easily usable, well-designed, and portable.

PVM will be used for distributed application development; it is portable among Unix
platforms.  RPC will be used to support interprocess communication; it is portable among
Unix platforms, and between Unix and Windows NT.

The Rogue Wave DBtools.h++ library [SL 95] will be used for database access.  It
provides a C++ interface to databases such as Oracle and Sybase.

2. Graphical User Interface
ArcView will be the primary graphical user interface; it will be customized with Avenue
to provide a uniform interface to as many of the TRANSIMS subsystems as possible.  It
will serve as a launcher, viewer, and data manipulator.  It may be necessary to use
ArcInfo for the parts of the graphical user interface where the customization capabilities
of Avenue are insufficient.

3. Database
IOC-1 will use the Oracle 7 relational database to manage the majority of the data in the
database subsystem.  This interfaces seamlessly with ArcView and ArcInfo.  A
customized storage system will be required to compress large simulation output data sets
to manageable size.
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4. Statistics
The ArcInfo-compatible version of S+ will be used for statistical analysis.

5. Geographic Information System
The Unix version of ArcInfo 7 will be used for the processing and analysis of geographic
data; one floating license will be required.  The majority of the GIS functionality will be
in ArcView, with ArcInfo used as a calculation engine.

C. Overview of Application Programs
Figure 8 provides an overview of the application programs used for IOC-1—both
commercial products and those developed by LANL.  Figure 9  shows how these
programs relate to the TRANSIMS analyst toolbox and the top level of the TRANSIMS
architecture.

S+

Planner Animation

ArcInfo ArcView

Oracle

PlottingCA

Figure 8.  Overview of application programs in TRANSIMS.  Those in italic type are
LANL-developed products, and those in upright type are commercial products customized
by LANL.  The solid lines represent strong links, and the dashed lines represent weak links.

Analyst Toolbox

Oracle ArcView S-PLUSHOOPS

CA MicrosimulationInterim
Planner

AnimatorInput Editor Plotter

C++ Code

Software Platform

Figure 9.  Relationship between application programs and the TRANSIMS architecture.
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D. Standards

1. Coding
We recommend adopting the coding (naming and usage) standards presented in
Taligent’s Guide to Designing Programs [Ta 94].  Supplemental usage guidelines are
available in the books by C++ FAQs [CL 95], C++ Strategies and Tactics [Mu 93], C++
Programming Style [Ca 92], etc.

Additional coding recommendations are:
• Classes have names indicating in which subsystem they belong.  This will aid in

navigating source code.
• Formal parameters for member functions should be included in the class definitions.

This makes the class definition more understandable.
• Member functions should not be inlined in the class definition.  This makes the

definition less cluttered and makes it easier to switch from inlining to not inlining.
• The documentation for each class should include a general description of the services

it provides and should specify any invariants or states it has.
• The documentation for each member function should include a general description of

its function, define its arguments, specify its pre- and post-conditions, say what state
changes may occur, and specify what exceptions it throws and why.

2. Documentation
The TRANSIMS documentation will describe TRANSIMS at a level of detail that is
useful to the software developer and, at the same time, understandable by the non-
programmer.  It will consist primarily of English text, supported and augmented by the
diagrams discussed below.  Refer to Using the Booch Method [Wi 94] for more detail.

The design documentation will include the following:
• The architectural specification captures the major abstractions and design decisions

that apply to the whole system.
• Class-category diagrams partition the system into high-level groupings of classes and

show their visibility to each other.
• Design class diagrams identify the key classes of the domain and show the

relationships between classes.  They also show the abstractions of the physical
implementation, detailed data types and structures, and the mapping of the logical
abstractions to the physical abstractions.

• Design class specifications define the class; its relationships, attributes, and
superclasses; and the interface of its operations.  They also show domain and
implementation details, such as algorithms for complex operations, internal data
attributes, and access control for operations and data.

• Design object-scenario diagrams illustrate how the objects will interact when tracing
the execution of a use case.  They also show the full implementation detail of a key
mechanism, including objects that deal with I/O, data structures, and persistent data.

• The implementation documentation will consist of the following:



LA-UR-97-1242 23

• Documented source code.  Source code is documented according to standards defined
above.

• Test results.  Results from carrying out the test suite are saved for regression testing in
subsequent executable releases.

• User manuals.  User documentation provides sufficient detail for the non-programmer
to successfully exercise the software.  The documentation will be available on-line.

3. Configuration Management
All source code, data files, diagrams, and documents should be under configuration
management control where practical.  One team member should be the primary contact
for dealing with configuration management issues.  A configuration management plan
should be completed as soon as possible.

E. Process

1. Methodology
We will use the Booch methodology as presented in John Berry’s class notes [CS 94],
Iseult White’s primer [Wi 94], and Grady Booch’s text [Bo 94].  To reduce risk, we
emphasize the following points from Managing Development, Chapter 8 of John Berry’s
class notes:
• We must fully utilize iterative development; we should have an incrementally

improved executable release every three to six weeks.
• We must preserve a clean, layered internal system structure (architecture).
• The individuals responsible for the TRANSIMS architecture must continue to

maintain the architectural integrity of the system.  Specifically, the team should
approve all changes to architectural interfaces, help assess project risks, and help
schedule the order and the content of the iterations.

To coordinate the development effort, we will use Iseult White’s book as a primer,
especially for identifying project deliverables.  Although we will produce simplified
versions of some of the documents, we should follow all of the steps of each iterative
cycle and produce a new executable version every few weeks.   For efficiency, we should
use the Rose tool as fully as possible and stick to its version of Booch notation and C++
coding style.  These match White’s book.  We should rely on the professionalism of the
team members rather than spend time overspecifying the methodology.

2. Reviews
We recommend the adoption of a software inspection procedure along the lines of that
outlined by Steve McConnell in §24.2 of Code Complete [Mc 93].  Inspections have been
shown “to be extremely effective in detecting defects and to be relatively economical
compared to testing” [Mc 93].  Each inspection involves a moderator/scribe, author, and
1–4 reviewers.  Each reviewer works alone inspecting the code for 90 minutes.  Later the
participants meet and the author paraphrases the code design and logic.  Errors and their
severity are noted by the reviewers, but they are not discussed beyond identifying them.
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The length of the meeting is limited to two hours, and the moderator writes an inspection
report.  Informal discussion of solutions is postponed until after the meeting.

Reviews will be held for both the design and the implementation phases of development.
Reviewers external to TRANSIMS may be included on the review panels.

3. Testing
It is recommended that each unit (class or group of classes) be tested by the author or
other interested parties before the code is checked into the configuration management
system for use by others.  (All test documentation, code, and data will be under
configuration management control.)  All functions and branches within functions will be
tested.

Integration testing will take place as soon as sufficient units are available to integrate the
components.  System testing will take place once per iteration of the software
development cycle.

IV. Future Work
The TRANSIMS software architecture will be expanded, revised, and updated throughout
the lifetime of the TRANSIMS project.  For example, in IOC-2, support will be added for
regional and intermodal traffic simulation.
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